Browse over 10,000 Electronics Projects using the Page Numbering provided at the bottom of each Page.

Examining the Core Memory Module inside a vintage IBM 1401 Mainframe

Examining the Core Memory Module inside a vintage IBM 1401 Mainframe
Use your ← → (arrow) keys to browse

Properties of ferrite cores

The physical properties of ferrite cores are critical to the operation of the core memory, so it is important to understand them. First, if a wire through a core carries a strong current, the core will be magnetized according to the direction of the current (following the right-hand rule). Current in one direction will write a 1 to the core, while the opposite current will cause the opposite magnetization and write a 0 to the core.Hysteresis is a key property of the cores: current must exceed a threshold to affect a core’s magnetization. A small current will have no effect on the core, but a current above a threshold will cause the core to “snap” into the magnetized state aligned with the current.

 

Closeup of the ferrite cores from the IBM 1401 mainframe's 4K storage. Four wires run through each core: X select, inhibit, Y select, and sense.

Closeup of the ferrite cores from the IBM 1401 mainframe’s 4K storage. Four wires run through each core: X select, inhibit, Y select, and sense.

The hysteresis property makes it possible to select a particular core. A “half-write” current is sent through the appropriate X select wire and a “half-write” current through the Y select wire. The single core with the selected X and Y wires will have enough current to change state, but the other cores will not have enough current, and will remain unchanged.

The final important property is that when a core switches its direction of magnetization, it induces a current in a sense wire through the core (kind of like a transformer). If the core already has the target state and doesn’t change magnetization, no current is induced. This induced current is used to read the state of a core. A consequence is that reading a core erases it, and the desired value must be written back to the core.

 

Structure of a core plane

Each core plane has 4000 cores arranged as a 50×80 grid of cores. (The I/O planes are configured differently, and will be explained later.) To reduce interference, the ferrite cores are arranged in a “checkerboard” pattern with each core arranged diagonally in the opposite direction from its neighbors. Four wires pass through each core. The horizontal wires are the X select line and the inhibit line (used for writing). The vertical wires are the Y select line and the sense line (used for reading). The X and Y select lines go through all the planes, so all planes are accessed in parallel.

Core memory in the IBM 1401. Each plane of cores has 4000 cores in a 80x50 grid.

Core memory in the IBM 1401. Each plane of cores has 4000 cores in a 80×50 grid.

To read a core, the X and Y select lines magnetize the selected cores to the “0” direction. If the core was previously in the “1” state, the core’s state change induces a current in the sense wire. If the core was already in the “0” state, no current is induced. Thus, the sense wire allows the bit stored in the core to be determined. The read process destroys the previous value of the core, leaving it in the 0 state. Each plane has a sense wire threaded through all the cores in the plane.



Advertisement


To write a core, current of the opposite polarity is sent through the X and Y select lines to magnetize the core into the 1 state. To keep the core in the 0 state, a current is sent through the plane’s inhibit line. The inhibit wire runs through all the cores in a plane parallel to the X select lines. By running the reverse current through the inhibit wire, the X line’s current is canceled out, and the core remains unchanged. The inhibit current is too low to flip a core by itself, so other cores are not zeroed out.

The diagram below shows the reverse-engineered wiring topology of an IBM 1401 core memory plane. Most of the core has been cut out of the diagram, as indicated by the dotted gray lines. The sides of the plane are labeled A through D, matching the 1401 documentation. The A and C sides have 56 pins, while the B and D sides of the plane have 104 pins. Not all the pins are connected.

The wiring topology of the IBM 1401's core memory plane.

The wiring topology of the IBM 1401’s core memory plane.

The X select lines are in green and the Y select lines are in red. The select lines are generated in a complex way by matrix switches, so core addresses are not arranged sequentially. Each matrix switch takes two sets of input lines and activates an output line based on the input values. The 5×10 X matrix switch has 5 row inputs and 10 column inputs, producing 50 outputs, which are the X select lines. The 10 column inputs come from the units digit, and the 5 row inputs are the “even hundreds” digit. The 8×10 Y matrix switch has 8 row inputs and 10 column inputs, producing 80 outputs for the Y select lines. The 10 column inputs are from the tens digit and the 8 row inputs are a tricky combination of the thousands and “odd hundreds”. This scheme may seem overly complicated, but it minimizes the hardware required for address decoding.

Each half of the core plane (0-1999 and 2000-3999) has a separate sense line loop, but they are usually wired together. The two sense lines are in blue and run in the Y direction. The sense lines are carefully arranged to avoid picking up interference. The lines cross over along the midpoint to cancel out noise from the Y select lines – the sense line runs in the opposite direction along half of each Y select line, so any induced signal will be canceled out. In addition, the sense lines are twisted as they exit the middle of the plane, to avoid picking up interference. (Many other core memory systems avoid interference by running the sense line diagonally, but the 1401 uses a rectangular layout.)

Each half of the plane has a separate inhibit line. The two inhibit lines are in brown and run next to the X select lines, which they inhibit. The two lines are normally driven separately to reduce noise, but have the same signal. Since the inhibit line switches direction each row, alternating X select lines are also driven in opposite directions.

Use your ← → (arrow) keys to browse

 




Top